BOSTON
UNIVERSITY

Fitting Models

DLADS — Spring 2024

https://udlbook.github.io/udlbook/

Loss function

* Training dataset of / pairs of input/output examples:
1
{Xiv Yifi=1

or measures how bad model is:

L[¢7 f [Xia ¢]7 {Xia Yi 7{:1]

or for short:

L [¢] Returns a scalar that is smaller

when model maps inputs to
outputs better

Training

e Loss function:

L [¢] Returns a scalar that is smaller

when model maps inputs to
outputs better

* Find the parameters that minimize the loss:

A

¢ = argmin [L|q]]
¢

Example: 1D Linear regression loss function

2.0
Loss, L = 7.11
o © © .
@)
> O
+J
2 1.0 ®e
+J
O:s |
®
0.04— - |
0.0 1.0 2.0

Input,

Loss function:

I

Lig) = > (fois#] ~ 92’

1=1
1

1=1

(o + P15 — 3)?

Example: 1D Linear regression training

0.0 1.0 2.0 00 10
Intercept, ¢ Input,

© 20

Example: 1D Linear regression training

0.0 1.0 2.0 00 10
Intercept, ¢g Input, x

© 20

Example: 1D Linear regression training

0.0 1.0 2.0 00 10
Intercept, ¢ Input,

© 20

Example: 1D Linear regression training

a)

b)

0.0 1.0 2.0
Intercept, ¢

0.0

0.0

0 20

Example: 1D Linear regression training
b)

- 0.0 . . . : :
0.0 1.0 2.0 0.0 1.0

Intercept, ¢ Input,

This technique is known as gradient descent

© 20

Fitting models

* Gradient descent algorithm
* Linear regression example
* Gabor model example

 Stochastic gradient descent
* Momentum
e Adam

Definitions

* derivative
e quantifies the sensitivity of change of a function’s output with respect to its
input

* a function is differentiable at a point a, if the limit
f(a+h)—f(a)

lim;,_, exists.
* You can approximate the derivative with this limit.

e gradient
* the degree and direction of steepness of a graph at any point

10

1

Also slope, m, of a
tangential line
evaluated at that point.

y

—~ =92z — 4
ox &

dy | B
o =212)-4=0

1

15T

10T

Which direction (+/-)
do we have to go
when slope > 0?

0y

27 9pm_ Y

ox v

dy| _

| =23)-4=2

1

The

slope/steepness/gradient
depends on where we
evaluate it

10

1

Which direction (+/-)
do we have to go
when slope < 0?

10

1

The

slope/steepness/gradient
depends on where we
evaluate it

10

1

Gradient

—i‘—
dpo
: OL
OL | 991
dp |
dL
LOdN
Partial derivative, e.g. rate of B e
) 20); <=
change, w.r.t. each input , | o |
]] Geometric Interpretation: Each variable is a unit
(independent) variable. vector, and then

e gradient is the rate of change (increase) in the
direction of each unit vector

e vector sum points to the overall direction of
greatest change (increase)

Fitting models

* Maths overview

* Linear regression example
* Gabor model example

 Stochastic gradient descent
* Momentum
e Adam

Gradient descent algorithm

Step 1. Compute the derivatives of the loss with respect to the parameters:

ﬂ
d¢o
OL

OL 9p1

96~ | ;| Also notated as V,, L

OL
L O N -

Step 2. Update the parameters according to the rule:

oL
d)(—qb—a%a

where the positive scalar « determines the magnitude of the change.

Fitting models

* Maths overview
* Gradient descent algorithm

* Gabor model example
 Stochastic gradient descent
* Momentum
e Adam

Gradient descent
Loss, L[¢]

-1.0 Step 1: Compute derivatives (slopes of function) with

Respect to the parameters

2

[
MN

.CUZ,] o yl)

.
|
—_

(¢ + d1s — i)°

I
]~

1

.
I

0.0 1.0 2.0
Intercept, ¢

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0 2.0
Intercept, ¢

Step 1: Compute derivatives (slopes of function) with
Respect to the parameters

2
xw] _yl)

[
MN

.
|
—_

(¢ + d1s — i)°

I
‘M“‘

=1

OL 0 < Y
96~ 962" "2

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0 2.0
Intercept, ¢

Step 1: Compute derivatives (slopes of function) with
Respect to the parameters

2
xw] _yl)

[
MN

.
|
—_

(¢ + d1s — i)°

I
‘M“‘

=1

OL 0 < Y
96~ 962" "2

ol |do| [2(¢o + ¢17i — yi)]
0 % 2z (po + 17 — yi)

1

Gradient descent
Loss, L[¢]

-1.0

oL
0¢

0.0 1.0 2.0
Intercept, ¢

8q§ 06 - Zﬁ -
B 3522 B [2(¢0 + P15 —
ng;fL 2zi(po + P1; —

Step 1: Compute derivatives (slopes of function) with
Respect to the parameters

Vi)]

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0
Intercept, ¢

Step 1: Compute derivatives (slopes of function) with

Respect to the parameters

8q§ a¢Z£ B

ol;
991

0P

Step 2: Update parameters according to rule

qb%cb—oza—i

a = step size or learning rate if fixed

ol; |:38£0:| B [2(¢o + P12 —

Vi)]

2zi(po + P1; —

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0
Intercept, ¢

Step 1: Compute derivatives (slopes of function) with

Respect to the parameters

8q§ a¢Z£ B

o | ot
¢ |5

Step 2: Update parameters according to rule

qb%cb—oza—i

a = step size

o0, | s [2<¢o+¢1azi

Vi)]

2zi(po + P1; —

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0 2.0
Intercept, ¢

2.0

® O
O
@
1.0
Input, x

2.0

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0
Intercept, ¢

Step 1: Compute derivatives (slopes of function) with

Respect to the parameters

8q§ a¢Z£ B

o | ot
¢ |5

Step 2: Update parameters according to rule

qb%cb—oza—i

a = step size

o0, | s [2<¢o+¢1azi

Vi)]

2zi(po + P1; —

Gradient descent
Loss, L[¢]

-1.0

0.0 1.0
Intercept, ¢

Step 1: Compute derivatives (slopes of function) with

Respect to the parameters

8q§ a¢Z£ B

o | ot
¢ |5

Step 2: Update parameters according to rule

qb%cb—oza—i

a = step size

o0, | s [2<¢o+¢1azi

Vi)]

2zi(po + P1; —

Gradient descent
Loss, L[]

-1.0

0.0 1.0 2.0
Intercept, ¢

2.0

® O
O
@
1.0
Input, x

2.0

Gradient descent
Loss, L[]

-1.0

0.0 1.0 2.0
Intercept, ¢

2.0

® O
@)
@
()
- @
1.0
Input, x

2.0

Gradient descent
Loss, L[]

-1.0

0.0 1.0
Intercept, ¢

2.0

Input, x

Line Search
Loss, L[¢]

-1.0

0.0 1.0 2.0
Intercept, ¢

We can also search for the optimal
step size at each iteration using
Line Search

a = step size

L[]

Li¢]

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4 1

0.2

0.0

Line Search (bracketing

1.0

0.0

0.2

0.4

0.6

0.8

1.0

L[]

L[]

1.0

0.8 1

0.6

0.4

0.2 1

0.0

0.0

1.0

0.8 1

0.6

0.4

0.2 A

0.0

0.0

0.2

0.4

L[]

L[]

1.0

0.8 1

0.6

0.4

0.2 1

0.0

0.0

10

0.2

0.4

0.8 1

0.6

0.4

0.2 4

0.0

0.0

0.2

0.4

Line Search (bracketing)

* For each iteration you are evaluating
loss four times

e Can be costly for more complex data

types and loss calculations (e.g.
image segmentation,)

* Not typically used for computer
vision

Li¢]

Fitting models

* Maths overview

* Gradient descent algorithm
* Linear regression example

 Stochastic gradient descent
* Momentum
e Adam

The linear model loss function was convex.

We'll use a more complex (non-convex)
model that we can still visualize in 2D and 3D

=» Gabor Function

Gabor Model (with Envelope)

flz, @] = sin[¢o + 0.06 - p17] - exp <_

(¢po + 0.06 - ¢1x)2)
8.0

Model Function

1.0 A

0.5 A

—0.5 1

_1‘0 .

Gabor model

flz, @] = sin[go + 0.06 - p12] - exp <_
b) o)

(¢ + 0.06 - qslx)?)
8.0

¢o=—5.0] | $0=20.0| b0=3.0
) $1=25.0 $1 =40.0 $1=15.0
g5 o0 U545 0 A5-Is 0 15
Input, Input, x Input,

¢ shifts left and right
¢, shrinks and expands the sinusoid and envelope

Toy Dataset and Gabor model

8.0

. 2
flz, §] = sindo + 0.06 - ¢12] - exp (_ (¢0 + 0.06 - 1))

Output, y

0
..
r). ®
@
® o
Y]
@ Loss=3.67
0I5

o ILos§= 10.18

e Lo§s=9.96

0 IS -15
Input, =

0 I
Input,

* Gradient descent gets to the global
minimum if we start in the right
“valley”

* Otherwise, descends to a local
minimum

* Or get stuck near a saddle point

Fitting models

* Maths overview

* Gradient descent algorithm
* Linear regression example
* Gabor model example

* Momentum
e Adam

Gradient descent

IDEA: add noise, save
computation

e Stochastic gradient descent

 Compute gradient based on
only a subset of points — a
mini-batch

* Work through dataset
sampling without
replacement

* One pass though the data is
called an epoch

Batches and Epochs
(Ex. 30 sample dataset, batch size 5)

Datalndices»[o 1 2 345 o 7 8910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29]
Permute‘[27152317892824120 4 1e 5 13 11 22 1 2 25 3 21 26 18 29 20 7 10 14 19 6]

Batch Size 5
Epoch # 0-————-—————-
ﬁ Step 0, Batch # 0, Batch Range [0 1 2 3 4], Batch index: [27 15 23 17 8]
S Step 1, Batch # 1, Batch Range [5 6 7 8 9], Batch index: [9 28 24 12 0]
%-é Step 2, Batch # 2, Batch Range [10 11 12 13 14], Batch index: [4 16 5 13 11]
N o Step 3, Batch # 3, Batch Range [15 16 17 18 19], Batch index: [22 1 2 25 3]
E; ; Step 4, Batch # 4, Batch Range [20 21 22 23 24], Batch index: [21 26 18 29 20]
™M o Step 5, Batch # 5, Batch Range [25 26 27 28 29], Batch index: [7 10 14 19 6]
Epoch # 1-————————-—-

O 1 2 3 4], Batch index: [27 15 23 17 8]

5 6 7 8 9], Batch index: [9 28 24 12 0]

10 11 12 13 14], Batch index: [4 16 5 13 11]
15 16 17 18 19], Batch index: [22 1 2 25 3]

0, Batch Range
1, Batch Range
2, Batch Range
3, Batch Range

Stochastic gradient descent

Before (full batch descent)

0l |¢,]
200

After (SGD)

ol;|
Gyl — P — Z th],

Gradient descent Fixed learning rate a

Stochastic
gradient descer

Properties of SGD

e Can escape from local minima

* Adds noise, but still sensible updates as based on part of data
e Still uses all data equally

* Less computationally expensive

e Seems to find better solutions

* Doesn’t converge in traditional sense

— decrease learning rate over time

Simple Gradient Descent

1.00

0.75

Think of analogy of a ball rolling
down a hill.

0.50

0.25

Would it follow path like on the
left?

0.00

Slope, ¢1

Why/Why not? What’s missing?

-0.50 4

-0.75 NN

-1.00 T ~ T n
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

ntercept ¢o

Fitting models

* Maths overview

* Gradient descent algorithm
* Linear regression example
* Gabor model example
 Stochastic gradient descent

e Adam

Momentum

* Weighted sum of this gradient and previous gradient
* Not only influenced by gradient
* Changes more slowly over time

My 1 < 5 - 1My + (1 — 6) Z 8€éibt]

Dp1 < @y — -1y N\

Still in batches.

Frequency, ¢1

Without and With Momentum

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5
-10.0

-7.5 -5.0 -2.5 0.0 2.5 5.0
Offset ¢o

Without Momentum, Loss = 1.31

7.5

Frequency, ¢1

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5 ’I — T - T
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

Offset ¢o

With Momentum, Loss = 0.96

=10

No momentum®

10-10

10

Nesterov accelerated momentum

* Momentum smooths out gradient of
current location

mt+1%5 mt—l— 1—

ZEB ' Nesterov

Pri1 < Gp — 0 My \ | momentum

 Alternative, smooth out gradient of
where we think we will be!

m;; < S8-my+ (1 - 0) Gy 8_q’)a -1y
2

Piiq < Gy — -1y \
Still in batches.

Frequency, ¢1

Nesterov Momentum

22.5 22.5 22.5

20.0 20.0 20.0

17.5 17.5 17.5

15.0 15.0 15.0
RN RN
o o
12.5 € 125 € 125
=] -
o o
[[
fre fre
10.0 10.0 10.0
75 75 75
5.0 5.0 5.0
2.5 _ _ = 2.5 . = 2.5 _ _ =
Z10.0 -75 -5.0 -25 0.0 25 5.0 7.5 Z10.0 -75 -5.0 -25 0.0 25 5.0 7.5 Z10.0 -75 -5.0 25 0.0 25 5.0 7.5
Offset ¢o

Offset ¢o Offset ¢o

Without Momentum, Loss = 1.31 With Momentum, Loss = 0.96 Nesterov Momentum, Loss = 0.80

Fitting models

* Maths overview

* Gradient descent algorithm
* Linear regression example
* Gabor model example
 Stochastic gradient descent
* Momentum

The challenge with fixed step sizes

a) Loss, L[] b) Loss, L]

Moves quickly in
one dimension
but slowly in the

other. \5

Too small and it will Too big and it will move
converge slowly, but quickly but might bounce
eventually get there. around minimum or away.

Solution Part 1: Normalized gradients

* Measure gradient m,,; and pointwise squared gradient v; 4

my, DLl
0

vy o QLD
=

« is the learning rate
€ is a small constant to prevent div by O
Square, sgrt and div are all pointwise

* Normalize:

My

VVir1 T €

D1 & Py —

Solution Part 1: Normalized gradients

* Measure gradient m,,; and pointwise squared gradient v; 4

., o QLS

A\ 8¢

2

vy o QLI

A\ a¢

e Normalize: a is the learning rate
€ is a small constant to prevent div by O
4 mtJA Square, sgrt and div are all pointwise

D1 & Py —

Vit €
vV Vi+ JF\ Dividing by the positive root, so normalized to 1
\. and all that is left is the sign.

Solution Part 1: Normalized gradients

* Measure mean and pointwise squared gradient

o, OLIgY —
t+ Y +
vy o QLD
9 Vi+l =
* Normalize:
mygq m
Qi1 — O, — s S
t+1 t \/T—I—l + € V Vil T €

125.0

Solution Part 1: Normalized gradients

c) Loss, L[¢]

$1

a=0.05

Normalized gradients

1

e algorithm moves downhill a fixed
distance a along each coordinate

* makes good progress in both
directions

* but will not converge unless it happens
to land exactly at the minimum

Adaptive moment estimation (Adam)

oL
L mi1 < §-my+ (1—) 8[¢t]
« Compute mean and pointwise ¢

squared gradients with momentum OL :
Vit <— Y- Vi -+ (1 — fy) a[j;t]
My — ! m,_, =0
 Boost momentum near start of the L Bt+1 t=0 —
sequence since they are initialized 5 Vit — 0
to zero Vit S T Ve=0 =

mit1

D1 — P — - —=
* Update the parameters o t V Vi1 + €

Adaptive moment estimation (Adam)

c) . Loss, L[]

d1

— — Normalized gradients

g ¢0 1

d)

1

Loss, L[¢]

- a—005ﬂ 0.9,7 = 0.99

do .

Other advantages of ADAM

* Gradients can diminish or grow deep into networks. ADAM balances
out changes across depth of layers.

 Adam is less sensitive to the initial learning rate so it doesn’t need
complex learning rate schedules.

Additional Hyperparameters

* Choice of learning algorithm: SGD, Momentum, Nesterov
Momentum, ADAM

* Learning rate — can be fixed, on a schedule or loss dependent

* Momentum Parameters

Recap

* Gradient Descent — Find a minimum for non-convex, complex loss
functions

* Stochastic Gradient Descent — Save compute by calculating gradients
in batches, which adds some noise to the search

* (Nesterov) Momentum — Add momentum to the gradient updates to
smooth out abrupt gradient changes

« ADAM — Correct for inbalance between gradient components while
providing some momentum

Next

* Gradient of Deep Networks: Chain Rule, backpropagation and
automated (scalable) gradient calculations

* Initialization

* Measuring training performance and how to improve
* Network regularization

---------- End of Foundational Concepts -----------------

* CNNs

* Residual Networks

* Transformers

Feedback?

